Archive Science

Monday Micro – Glowing Superbugs at TEDxChristchurch Siouxsie Wiles May 18

No Comments

Last November I talked about my research at TEDxChristchurch. It was my first experience of a TEDx event and I was blown away by how amazing and inspirational the day was. It was very humbling to have been given the opportunity to enthuse about bioluminescence and bacteria. Here’s the video of my talk, also featuring glowing caterpillars and genitals!

YouTube Preview Image

Those “illegal” school science kits and our illogical Hazardous Substances and New Organisms Act Siouxsie Wiles Apr 08


The Dominion Post recently ran an article about “Glowing GE bacteria” which were “produced illegally in New Zealand using mail-order kits from America”. Perhaps unsurprisingly given that the phrase ‘genetically engineered’ was mentioned, Green MP Stefan Browning and GE Free New Zealand spokesperson Jon Carapiet chimed in to share their dismay that people/kids were fiddling with complex natural systems and things that posed a threat to our GE-free status (which we aren’t). I’m paraphrasing here, but I think that was the sum of it. The usual GE = evil sort of stuff. Let’s look at what happened and if it posed any risk to anyone.

Who made what and why was it illegal?

A global biotech company originally founded in the USA, and which makes lots of laboratory reagents scientists like me commonly use, make a kit for school kids to teach them about genes. The kit includes a piece of DNA called a plasmid*, and a harmless strain of the bacterium E. coli. Heat the bacteria up a little and they will take up the plasmid DNA, technically creating a genetically engineered strain of E. coli. In this case, the plasmid carries the gene for an amazing jellyfish protein called Green Fluorescent Protein (GFP). When you shine light of a particular wavelength at GFP, it emits a beautiful green light. so once the E. coli have the plasmid and the GFP gene is turned on, the bacteria glow green.

So it turns out that two educational facilities in NZ imported the kits from the USA (which is allowed) and then presumably used them to teach people (presumably kids or undergraduates?) how bacteria can be manipulated to express different genes, and how genes can be turned on and off. The problem is that in NZ, thanks to the Hazardous Substances and New Organisms Act**, such genetic modification can only be done with approval from the Ministry for Primary Industries and in suitable containment facilities, like the one I work in. Because this is what my team and I do for a living. We use genes from other glowing creatures like fireflies. Only we put them into nasty bacteria, not harmless strains of E. coli. And we have all the relevant paperwork. Reams and reams of it.

My guess is that in this case, the kit was perhaps used without the proper approvals, or outside of a proper containment lab, or someone who made the modified bacteria in a containment lab thought it was so cool they took it home. Any of those scenarios would be illegal. But let’s be clear. The bacteria ‘created’ is harmless and highly unlikely to pose any threat to NZ’s environment. In the USA (with the exception of California, I’m told, who are as hysterical about genetic engineering as NZ), you can buy pet fish which express GFP and other fluorescent proteins. They are beautiful.

YouTube Preview Image

NZ needs to have a rational discussion about genetic engineering

All around the world, the evidence shows that genetic engineering as a technique is safe. The hysteria and fear-mongering of people like Browning and Carapiet isn’t helpful. NZ needs to have a rational discussion about the technology. If we decide to be GE free, it won’t be because the science is dangerous, it isn’t, it’ll be so that we can appeal to markets that want GE free products. That’s economics.

New Zealand’s ludicrous New Organism designation

As a final comment, the Act’s definition of a New Organism is problematic, especially for microbiologists. Here’s the definition:

A new organism is—
(a)an organism belonging to a species that was not present in New Zealand immediately before 29 July 1998:
(b)an organism belonging to a species, subspecies, infrasubspecies, variety, strain, or cultivar prescribed as a risk species, where that organism was not present in New Zealand at the time of promulgation of the relevant regulation:
(c)an organism for which a containment approval has been given under this Act:
(ca)an organism for which a conditional release approval has been given:
(cb)a qualifying organism approved for release with controls:
(d)a genetically modified organism:
(e)an organism that belongs to a species, subspecies, infrasubspecies, variety, strain, or cultivar that has been eradicated from New Zealand.

Read part (a) again. If an organism is not on any database or listed in a paper as showing it was present in NZ before 29 July 1998, its considered a new organism. I’m told the first time NZ researchers sequenced the gut microbiome of a person in NZ, they came across a whole heap of microbes that according to the law didn’t exist in NZ. Seriously. The flip side to this of course, is that each time anyone comes here from overseas, be it a holiday-maker or NZ resident returning from a trip, they are likely bringing in a whole heap of new (micro)organisms in or on their person. And there’s not much the government can do about that!

*A plasmid is a piece of DNA that exists outside of an organisms chromosome and can replicate itself independently. The wikipedia page for plasmids uses a nice analogy – think of the chromosome of the organism as its hard drive; a plasmid is like a USB drive that contains extra information.

**According to the Hazardous Substances and New Organisms Act, its purpose is “to protect the environment, and the health and safety of people and communities, by preventing or managing the adverse effects of hazardous substances and new organisms”.

Glowing fun at the MOTAT Science Street Fair Siouxsie Wiles Apr 02

No Comments
Thanks to Heather Hendrickson for the photos!

Thanks to Heather Hendrickson for the photos!

Last weekend the Bioluminescent Superbugs Lab took part in this year’s Science Street Fair at MOTAT in Auckland. We had the GlowBooth up and running again (at least until the camera’s battery died!) and 262 people joined us to make some bioluminescent art. There were lots of smiley faces drawn this time!

GlowBooth photos are up on Flickr here.

Glowing art photos are up on Flickr here.


In search of glowing limpets! Siouxsie Wiles Apr 01

1 Comment
Project Twin Streams community coordinator Derek March holds up a rock for us to see the little limpets

Project Twin Streams community coordinator Derek March holds up a rock for us to see the little limpets (the black splodge by his finger at the top of the photo!)

Several years ago I was interviewed on Radio NZ by Kim Hill for her Playing Favourites segment. Afterwards I was contacted by Stephen Moore, an entomologist at Landcare Research, who told me about Latia neritoides, the world’s only bioluminescent freshwater limpet, which is only found on the North Island of New Zealand. He offered to take me to see it, and later that year I found myself splashing around in the Opanuku Stream. Sadly, Stephen died not that long afterwards, but Project Twin Streams community coordinator Derek March continues in his footsteps, taking the public to see the limpets and experience their bioluminescence.

A few weeks ago, I had the pleasure of taking Veronika Meduna, from Radio NZ’s weekly science show Our Changing World, to see the limpets with Derek and a group of friends and family. Veronika recorded our trip so you can hear us splashing about and enthusing about the limpets and other wildlife here.

Latia neritoides live on rocks where they feed off organic matter like algae. They release a bright glowing slime when disturbed, which suggests they use it for defense, either to startle or distract their predator. It’s certainly a beautiful sight, even if it is slime!

Latia luminescence. Photo courtesy of Stephen Moore & Landcare Research

Glowing limpet slime. Photo courtesy of Stephen Moore & Landcare Research

My top 10 TB facts for World TB day Siouxsie Wiles Mar 24

No Comments


TB Culture” by Photo Credit:Content Providers(s): CDC/Dr. George Kubica – This media comes from the Centers for Disease Control and Prevention‘s Public Health Image Library (PHIL), with identification number #4428.

The 24th of March is World TB day, held to raise awareness of the epidemic that is tuberculosis (TB). Why the 24th of March? Because this is the date in 1882 when Dr Robert Koch announced that he had discovered Mycobacterium tuberculosis, the bacterium responsible for TB. So here are my top 10 TB facts:

1. TB is a lung disease that humans have had for a long long time. Each wave of early humans who left Africa took TB with them, so there are lineages of TB like there are lineages of people (1).

2. TB, or consumption as it was known, was thought to be a hereditary disease, rather than an infectious one. Many famous artists, writers and composers had TB which probably helped its image. It was the forerunner to ‘heroin chic’. Consumption wasn’t feared like the plague or cholera were because it was a slow death giving people time to put their affairs in order.

3. According to the World Health Organization, in 2012 there were an estimated 8.6 million new TB cases and 1.3 million people died from the disease.

4. The TB bacterium is a bugger to kill. Easy to treat TB = 6 months of a cocktail of antibiotics.

5. Hard to treat TB = 18 months to 2 years of treatment with a cocktail of antibiotics.

6. There are now strains of M. tuberculosis circulating around the world that are resistant to all antibiotics in clinical use. Treatment options include surgery to remove the infected parts of the lungs, or isolation.

7. It is estimated that 1 in 3 people worldwide have the TB bacterium in their lungs – they aren’t infectious but are a huge reservoir of people that can go on to get active infectious TB.

8. If you think we don’t have TB in NZ, think again. In 2013 there were 263 new cases. Three of these people died (2).

9. If you think TB just affects the poor, think again. If you are human & breathing you can catch TB. I recently gave a talk to some wealthy retired society ladies and one of them came up to me afterwards to say she had been treated for TB a few years ago. She said she was horrified when her doctor told her as she had thought “people like me don’t get TB”. Wrong!

10. If you were BCG vaccinated as a child so think you are protected, think again. BCG does not protect for life. And unfortunately it’s not just a simple case of getting a booster.


1. Gagneux, S (2012). Host–pathogen coevolution in human tuberculosis. Philosophical Transactions B. DOI: 10.1098/rstb.2011.0316

2. Institute of Environmental Science and Research Ltd (ESR) (2015). Tuberculosis in New Zealand: Annual Report 2013.

thinkScience at the Auckland Arts Festival – Biolumination II Siouxsie Wiles Mar 23



Saturday the 14th March saw the debut of thinkScience as part of the 2015 Auckland Arts Festival. As part of the day’s events, I organised a number of activities/installations involving a harmless marine bacterium that naturally glows in the dark. I got involved for many reasons, including putting science in places people weren’t expecting it, providing a space for the public to interact with scientists and also to show people that while they may be repulsed by the idea of bacteria and ‘germs’, these creatures can also be beautiful.

Biolumination II

In Biolumination II, I acted as curator, challenging artists/illustrators Helen Beech, Julia Marchwicka, Cinzah ‘Seekayem’ Merkens, Hope Sutherland, Rodrigo Vidal, Laura Ward and Katherine Yang, to each come up with a work of art using just a solution of harmless bioluminescent bacteria and a collection of 25 x 25 cm square petri-dishes. To give you an idea of scale, most of the pieces were 1 metre high by 1 metre wide. That’s a lot of agar!

Unfortunately for the artists, the bacterial solution is essentially invisible, and the artists weren’t able to see their creation until the bacteria had grown the next day. The works were displayed in the Vault, part of Q Theatre. The exhibit was open from 10:30am till midnight and was visited by over 1600 people.

biolumination summary

From left to right, top row: Helen Beech, Julia Marchwicka, Cinzah ‘Seekayem’ Merkens; middle row: Hope Sutherland, Rodrigo Vidal, Laura Ward; bottom row: Katherine Yang. Photographs by Benj Brooking.

I’ll post better pictures and more info about each of the artists over the coming week. Overall, I am really pleased with how Biolumination II turned out. It was just amazing to see the beautiful creations each of the artists coaxed out of their bacterial solution. A huge thanks to my lab, most notably Benedict Uy, as well as James Dalton and Hannah Read, for preparing the litres and litres of media needed to make this exhibit a reality. Thanks also to Gareth Baston, chief petri-dish wrangler, for turning the Vault from a bare theatre space into an art gallery for the day.

So what did the public think?

Dr Rhian Salmon, of Victoria University, Wellington, suggested using post-it notes to gather feedback from visitors to the exhibit. The ‘Illumination Board’ was born and 160 messages were left there throughout the day.

illumination board

These are just some of the messages posted:

“As an artist, I love the out-of-box-thinking and integration of science and art – most inventive.”

“Mindblowing glowing art science wonder.”

“I found that intreging (sic) and interesting, scary at the same time. Overall I enjoyed it.”

“Amazing example of art and science combining to create an amazing learning experience.”

“Fascinating and so creative. Well done. Never thought I would see something like this.”

“Science alive – every child (and big child) should see this.”

“This was cool. To think that’s bacteria. It’s amazing. I had a wonderful experience.”

As a scientist, my intention with Biolumination II was to bring people to science through art, but one message showed me the opposite was also true:

“Wonderful. The only time my scientist daughter (11) enjoyed art.”

These activities wouldn’t have happened with the financial and/or logistical help of everyone involved in thinkScience, the Auckland Arts Festival, the Ministry for Business, Innovation and Employment, the University of Auckland, the Maurice Wilkins Centre for Molecular Discovery, and Tile Space. And of course the never-ending patience of my lab!

thinkScience day at the Auckland Arts Festival Siouxsie Wiles Mar 05

No Comments


Saturday the 14th of March sees the debut of thinkScience*, a mini-festival of science being held as part of the Auckland Arts Festival family weekend and White Night. We may be starting small, but we have something for everyone!

Interested in things that go whiz/bang or got any kids or grandkids that are? Then ‘Nanogirl’ Michelle Dickinson’s early evening show in the Town Hall is for you! Prepare to have your mind blown as Nanogirl explores the wonders of cloud power, wind power, magnet power and fire power. Tickets available here.

Interested in something more cerebral? In the Spiegeltent in Aotea Square will be two panels exploring how science shapes our city. The first panel will look at what makes the city work – the natural, technological, human, and the interactions between them. The second session focuses on ideas and innovation – how can ideas change our world? Tickets available here.

Interested in science as art or things that glow? In Q Theatre, I’ll be challenging a group of artists and illustrators to create a living work of art using glowing bacteria. Meanwhile, in Aotea Square will be a photo booth with a difference, where people can step into the dark and be photographed by the light of glowing bacteria. People can also try their hand at creating glowing art, drawing their very own masterpiece using nothing more than a solution of harmless glowing bacteria and a petri-dish. These events are free, details available here.

*thinkScience is the brainchild of Prof Richard Easther, head of Physics at the University of Auckland, and Victoria Carter, chair of the Auckland Arts Festival. thinkScience is supported by the University of Auckland’s Faculties of Science, Engineering and Medical & Health Sciences, the Ministry of Business, Innovation and Employment, Te Punaha Matatini, MacDiarmid Institute, Maurice Wilkins Centre for Molecular Biodiscovery, Tile Space, ASB Community Trust, Buddle Findlay and event partner Auckland Arts Festival.

**Photo of Auckland skyline posted anonymously here.

WANTED! Artists/illustrators needed for glowing art/science project. Siouxsie Wiles Feb 09


hello kitty

Are you an artist/illustrator who wants to try something different? Or do you know anyone who is?

I’m looking for 8-10 people to join me for a very special project as part of this year’s thinkScience day being held during the Auckland Arts Festival and White Night. They will need to be free and in Auckland on Friday 13th and Saturday 14th of March and not be a germaphobe….

The challenge: to create a 1 metre x 1 metre art piece.

The catch? The ink is actually a solution of bacteria and the ‘canvas’ a collection of petri-dishes.

The bacteria the artists will be using is not dangerous, and naturally glows in the dark. This means that wherever the artists draw/paint onto the petri-dishes, the bacteria will grow. And when they do, they will glow a beautiful blueish colour in the dark.

Interested? Get in touch!

Here’s a time-lapse of a ‘drawing’ Rebecca Klee and I made:

YouTube Preview Image

Why scientists need to step up & engage! Siouxsie Wiles Feb 08

No Comments

A few days ago, the UK parliament voted in favour of making Britain the first country in the world to permit IVF babies to be created using biological material from three different people. The vote passed by 382 to 128 – a majority of 254 – and is to amend the UK’s 2008 Human Fertilisation and Embryology Act to allow mitochondrial donation. With this technique, to prevent serious genetic diseases, involves using a donor egg which has had its nuclear DNA removed, a woman’s nuclear DNA and then a man’s sperm as normal. You can listen to me talking about this momentous vote with Kathryn Ryan on Radio NZ’s Nine to Noon programme here.

The reason the vote has got some people alarmed is because the donor egg will still contain some genetic material from the donor, in the form of mitochondrial DNA. But it’s a miniscule amount. Almost all of our DNA is found in the nucleus of our cells, apart from a little stretch found in our mitochondria that codes for 37 genes. Mitochondria are the powerhouses of our cells, producing ATP, the energy currency of our body. The mitochondrial DNA (or maternal DNA) is inherited solely from the egg. In ’3-person IVF’ this DNA will come from the donor egg rather than the mother’s egg.

There are a number of illnesses caused by mutations in mitochondrial DNA, such as Kearns–Sayre syndrome (KSS), which causes a person to lose full function of heart, eye, and muscle movements. The law change will give women who have mitochondrial mutations the opportunity to have healthy, genetically-related children who won’t suffer from the devastating and often fatal consequences of mitochondrial disease.

Perhaps unsurprisingly, the technique has been labelled unsafe, unethical and a step towards designer babies by many religious leaders. In an article on the Guardian website, the Wellcome Trust’s Mark Henderson*(@markgfh) says much credit to the successful vote should go to Prof Doug Turnbull who has spent the past decade taking opportunities to discuss his work on mitochondrial donation in the media, at science festivals and with the public, politicians and regulators. And over that decade Prof Turnbull has become a case study in learning to communicate difficult and controversial research successfully. Writes Mark:

“It is my firm belief that not only would MPs not have supported the regulations allowing mitochondrial donation, but that those regulations would never have been laid for a vote at all…..What Turnbull’s evolution over the past decade shows is how important it can be for scientists who are never going to be Brian Cox or Alice Roberts to recognise that taking public engagement seriously is not only the right thing to do, but beneficial to their science. Without it, Newcastle’s mitochondrial research might have been forever confined to the lab, instead of poised to have a direct impact on the lives of families affected by a devastating disease.”

Mark is absolutely right. Here in New Zealand we are fortunate to have the Science Media Centre (SMC) who run a number of workshops to upskill scientists to better communicate with the media. We also have a number of prizes aimed at rewarding those scientists who do step up and communicate, such as the Prime Minister’s Prize for Science Media Communication, and the Royal Society of New Zealand’s Callaghan Medal. Later this month, with the help of the SMC, award-winning writer and broadcaster Alison Ballance and the lovely folk at Mohawk Media, I’m running a workshop to introduce scientists and science communicators to the power of animation to tell science stories. I’m putting my money where my mouth is too – donating $10,000 of my PM’s Prize pot to help some of the ideas on the day turn into animations. Watch this space!

*Writer of the fantastic Geek Manifesto… Check out his great TEDx talk:

YouTube Preview Image

Biolumination: Turning glowing fish poo into art… sort of! Siouxsie Wiles Jan 22


Last year I collaborated with artist Rebecca Klee for the Art in the Dark festival, held in Auckland, New Zealand, each year. Our piece, called Biolumination, featured several litres of glowing bacteria, some custom-made glass tubes and three aquarium pumps. A big thanks to Benj from Gather and Hunt who shot some footage of our installation and put together this short video in which I explain why the bacteria we used glows in the first place.

YouTube Preview Image

Network-wide options by YD - Freelance Wordpress Developer