By Ken Perrott 10/09/2015 5

Here are some of chemists’ pet peeves about discussion on social media and the internet in general. The list is from the article  5 simple chemistry facts that everyone should understand before talking about science posted on the blog The Logic of Science.

Everyone who has attempted to discuss issues like vaccination or fluoridation with opponents will have come across these arguments which the author describes as “based on a lack of knowledge about high school level chemistry.” This ignorance doesn’t seem to prevent the perpetrators of these arguments presenting with extreme confidence and fervour. When challenged they often question the scientific credibility of their critics and urge them to “do some research!”

1: Everything is made of chemicals

The article points out:

“This seems like a simple concept, but many people seem to struggle greatly with it, so let’s get this straight: all matter is made of chemicals. You consist entirely of chemicals. All food (even organic food) consists entirely of chemicals. Herbal remedies consist entirely of chemicals, etc. So, when someone says something like, “I don’t vaccinate because I don’t want my child to be injected with chemicals,” they have just demonstrated how truly uninformed they are, and you can be absolutely certain that they don’t know what they are talking about because all matter is made of chemicals.”

Yet these arguments and terms like “chemical-free” seem to have gripped public consciousness. The only thing “chemical-free” is empty space!

A particular peeve of mine is the attitude advertisers seem to have that by declaring their product “chemical-free” they can get away with not identifying the real chemicals in their product. Recently at the supermarket I searched in vain for an indication of the chemicals in a package of sea salt. Genuinely intrigued to find what other salts were present, together with the majority sodium chloride, all I could find was the description that the product was “chemical-free!”

2: The dose makes the poison


“There is no such thing as a toxic chemical, there are only toxic doses. Let me say that again: all chemicals are safe at a low enough dose, and all chemicals are toxic at a high enough dose. This is a fundamental fact that people in the anti-science movement routinely ignore.”

Yet look at how the anti-science movement ignores this simple fact. Anti-fluoridationists who seem to think that have a foolproof argument by waving Material Safety Data Sheets for water treatment chemicals like fluorosilicic acid and sodium fluorosilicate. Such sheets supply information for people manufacturing, handling and transporting the concentrated chemical. They have absolutely no relevance for the person drinking the water coming out of their tap.

A little more sophisticated (although only a little) are the arguments based on scientific studies of rats administered chemicals at concentrations far higher than confronted by the ordinary consumer. Anti-fluoridationists spout so  much hot air citing studies of rats administered 100 ppm F or more in their drinking water to claim that drinking fluoridated water which has an F concentration of 0.7 ppm is harmful!

“The importance of this fact cannot be overstated. No chemical is inherently safe or inherently dangerous. So, the next time that someone tries to scare you about the “toxic chemicals” in your food, medicine, vaccines, detergents, etc. ask them for two pieces of information:

  1. What is the toxic dose in humans?
  2. What is the dose in the product in question?

Those two pieces of information are absolutely crucial to evaluating the safety of the product. You simply cannot know whether that chemical is dangerous without knowing the dose in the product and the dose at which it becomes toxic.”

3: There is no difference between “natural” and “synthetic” versions of a chemical

“I often hear people claim that “synthetic” chemicals (a.k.a. chemicals made in a lab) are not as good for you as their “natural” counterparts. The reality is that this represents a misunderstanding of literally the most fundamental concept of chemistry. The most basic unit of matter is the atom, and there are several different types of atoms known as elements. We combine these elements to make various molecules, and the combination of elements determines the molecule’s properties. The process by which those elements were combined is completely and totally irrelevant to how the final chemical behaves.

For example, water (a.k.a. dihydrogen monoxide) consists of three atoms: 2 hydrogens and 1 oxygen (hydrogen and oxygen are both elements). There are literally thousands of different chemical reactions that will produce water. In other words, we can make water thousands of different ways, but water always behaves in exactly the same way no matter how it was formed because it always consists of the same three atoms. Further, if given a vial of pure water, there isn’t a chemist anywhere in the world who could tell you how that water was produced because it would be completely identical to all of the other water everywhere on the planet. So, as long as the chemical structure is the same, it doesn’t matter if the chemical was extracted from a plant or synthesized in a lab.”

Yet, how often am I told that fluoridating chemicals are bad because they are “industrial,” “manufactured” or “synthetic.” The implication being that if we just dug these minerals out of the ground and dumped them in the water things would be quite OK. Of course, these people ignore the impurities present in “natural” ores and chemicals. Purification to a standard suitable for use in foods and drinking water requires chemical processing. Does treatment converting an “unsafe” ore or chemical to a safe (for consumption) chemical somehow make the chemical unsafe because it is now synthetic?

4: “Natural” chemicals are not automatically good and “artificial” chemicals are not automatically bad

“I often encounter people who will claim to agree with everything that I have said thus far, but they still insist that “artificial” chemicals (a.k.a. chemicals that simply are not found in nature) are bad for you and shouldn’t be consumed, injected, etc. There are several critical problems here. First, remember again that all chemicals are dangerous at a high enough doses and safe at a low enough dose. That is just as true for artificial chemicals as it is for natural chemicals. Second, this claim is nothing more than an appeal to nature fallacy. Nature is full of chemicals such as cyanide and arsenic that are dangerous at anything but a very low dose, so there is no reason to think that the “naturalness” of a chemical is an indicator of its healthiness.

Further, remember that chemicals are nothing more than arrangements of elements. There is absolutely no reason to think that nature has produced all of the best arrangements or that we are incapable of making an arrangement that is safe or even better than what nature produced. I constantly hear people say that we cannot improve on nature, but that is an utterly ludicrous and unsupportable claim, and I would challenge anyone to give me a logical syllogism that backs it up. Really think about this for a minute, if you are of the opinion that artificial chemicals should be avoided, try to defend that position. Ask yourself why you think that. Can you give me any reason to think that they are bad other than simply that they aren’t natural (which we have just established is a fallacy)?”

This nature = good, articifial=bad,  argument may appeal to the emotions of the chemo-phobic consumer, but it is just not rational.

5: A chemical’s properties are determined by the other chemicals that it is bound to

This is so obvious to anyone who has a rudimentary understanding of chemistry – but surprisingly it still gets challenged. How often have I come across anti-fluoride campaigners referring to fluorine containing chemicals like sarin gas (a chemical weapon), Prozac (a drug), hydrofluoric acid (a corrosive acid) – or even to fluorosilicates (used to treat water but decomposing on dilution) as if their properties were relevant to the fluoride in drinking water.

“Chemical compounds are made by combining different elements or even molecules, and the final product may not behave the same way as all of its individual parts. Sodium chloride is a classic example of this concept. Sodium is extremely reactive and will literally explode if it contacts water, and chlorine is very toxic at anything but an extremely low dose. Nevertheless, when we combine them we get sodium chloride, which is better known as table salt. Notice that table salt does not have the properties of either sodium or chlorine. It does not explode when it contacts water and you cannot get chlorine poisoning from it no matter how much of it you eat. The combination of those two elements changed their properties and it would be absurd to say that “salt is dangerous because it contains sodium.” The sodium in salt no longer behaves like sodium because it is bound to the chlorine. Therefore, when you hear a claim that something contains a dangerous chemical, make sure that the chemical isn’t bound to something that makes it safe.”

And therefore:

“So, claiming that “mercury is dangerous and vaccines contain mercury, therefore vaccines are dangerous” is no different from claiming that “sodium is dangerous and salt contains sodium, therefore salt is dangerous.””

Most dangerous and toxic  chemicals contain hydrogen, carbon, oxygen and/or nitrogen. That doesn’t make pure water toxic because it contains oxygen and hydrogen. Proteins, starches and sugars toxic because they contain hydrogen, oxygen carbon and nitrogen. Or the air we breath toxic because it contains oxygen and nitrogen.

5 Responses to “Why the internet annoys chemists”

  • Thanks Ken for this. Agree with nearly all the points. Trying to take the non-scientists’ point of view, there is a fear factor semi-justified: Our metabolisms are usually effective in dealing with chemical insults – our much abused livers, by and large, do a great job. However substances that are new to our metabolism or new to our environment and which we may not have evolved pathways to deal with, are a potential problem Asbestos – a lovely “natural” chemical comes to mind. Another example is 2-4 dichlorophenoxyacetic acid, probably quite benign, (I used it in my garden in the 60’s) but the preparation usually includes traces of so-called dioxins which are regarded as serious toxins. This example tells us the the nominal substance may not be problematic in itself, but that unexpected effects are always possible. The solution is more and more careful chemistry.

    And it should be said that quite contrary to the “natural-is-safe” myth, substances in traditional foods and spices and recreational rugs that are regarded as safe, may have unnoticed cumulative carcinogenic or other toxic effects . The occasional ritual smoking of tobacco was no doubt quite harmless for native Americans. Kava, used widely in the Pacific has been banned in some European jurisdictions. And if the current fad has any basis, even gluten in wheat may have its dangers.

  • This comment in the article: “So, claiming that “mercury is dangerous and vaccines contain mercury, therefore vaccines are dangerous” is no different from claiming that “sodium is dangerous and salt contains sodium, therefore salt is dangerous.””
    Begs the question of, “Well, if there is mercury in the vaccine, and mercury is indeed a well known toxin when introduced into the human organism, WHAT exact chemical(s) does the author suggest the mercury has combined with to make it inert within the human body? In other words, what chemical within a vaccine neutralizes the toxicity of mercury? Hmmm?

    • Can’t understand your question, Don.

      Thiomersal, commonly known in the U.S. as thimerosal, is an organomercury compound. This compound is a well established antiseptic and antifungal agent. It is used in vaccine for obvious reasons but is currently being phased out as a precautionary measure. There is no evidence it is unsafe.

      Its chemical name is Ethyl(2-mercaptobenzoato-(2-)-O,S) mercurate(1-) sodium and it formula is C9H9HgNaO2S

      It contains mercury but is not mercury – just as it contains sodium and sulphur but is not sodium or sulphur. And in the same way that proteins contain carbon and nitrogen but are not cyanide.

      That is the point being made.

  • Great post Ken, that is spot on regarding the biggest chemical misconceptions that are seen on the internet.

    Don, you might also want to reconsider Ken’s second point that it is the dose which makes something a poison.