A fun experiment to try at your desk

By Marcus Wilson 13/03/2014

I received the latest PhysicsWorld magazine from the Institute of Physics yesterday. A quick flick through it reveals a fantastic demonstration you can do with kids (or grown-up kids) to show how strong friction can be. Take two telephone directories, and interleave the pages (so every page of book A has a page from book B above and below it, and vice versa). Admittedly this takes some dedication, but that's what graduate students are for. Then try to pull the directories apart. In fact, the photo in the magazine shows two such interleaved directories being used in the centre of a tug-of-war. I have got to try with my students. 

In fact, you don't need the patience to turn page-by-page through two phonebooks to do this. I've spent a couple of minutes interleaving my copy of the 84-page University of Waikato Science and Engineering Graduate Handbook with the slightly larger University of Waikato Science and Engineering Undergraduate Handbook.  (Some might say the two make a lot more sense arranged in this manner….) It didn't take too long to do. I can't pull them apart.

It's simply down to the large surface area that the interleaved books have. They are A5 in size (approx 21 cm x 15 cm), with 86 (84 pages plus inside covers) surfaces. That gives, very approximately 27000 cm2 area of contact, around two or three metres squared of contact. That's pretty sizeable. A pair of telephone directories could come in at about 30 metres squared or so!  Lots of surface are gives lots of frictional force. 

0 Responses to “A fun experiment to try at your desk”

  • It is fun… I’ve done it with my kids.
    Mythbusters did the same a few years ago – but then they got the cars out, followed by tanks to try and pull apart.. amazing

  • Yep, the Mythbusters attempt was great – the bolting plates connecting the chains to the phonebooks ripped out before the pages separated!

  • I think that maybe its the same reason the bladeless turbine is so efficient. The plates grip the water and push it into the vortex in the middle..