Telepathy breakthrough – great science, not science fiction

By Marcus Wilson 08/09/2014


The 'Science' news hitting the media at the weekend was Guilio Ruffini and Alvaro Pascual-Leone's demonstration of 'telepathy'. There's been a lot of media coverage on this – for example the neat little interview of Ruffini on the BBC's 'Today' programme.

Their article on this can be read here. It's not a long one, and, for a piece of science, I reckon it's pretty clearly described. 

But, I'm afraid, you can forget The Chrysalids – the messages sent from India to France are of a rather more humble nature. But the science behind it is great. 

Essentially, the work has linked together two existing technologies, via the internet. The first is long-established – namely monitoring of the electroencephalogram (EEG). If you place electrodes on the surface of your scalp, you can detect electrical signals that originate from the electrical behaviour of the neurons in the cortex of your brain. The signals aren't large, just a few microvolts, but they are fairly easy to pick up. I get students doing it in the lab. Different kinds of brain activity lead to different signal patterns. A 'thinking' brain has lots of small amplitude, fast activity, whereas someone in deep sleep shows an EEG pattern that has a large, approximately 1 Hz cycle to it. The two patterns are very different. EEG is routinely used for monitoring sleep patterns and as a tool for an anaesthetist to monitor the depth of anaesthesia in their patient – one wants to make sure the patient is well anaesthetised, but on the other hand one doesn't want to head into Michael Jackson territory. The EEG can help. 

So the EEG is a way of 'reading' the state of the brain. To go from an EEG recording to working out what the subject is thinking about is a long, long way off, if indeed it's possible at all, but one can certainly say something about the brain state. 

If EEG is about reading the state of a brain, then the other technology, transcranial magnetic stimulation (TMS), does the reverse. This is rather newer, and our understanding of it is much poorer (I'm involved with a TMS research project at the moment).  In TMS, pulses of magnetic field are applied to the brain. The effect depends on what area of the brain the pulse is applied to, and in what orientation. At a simple level you can make an arm 'twitch' by applying the pulse to the correct part of the motor cortex. I've seen this done at the University of Otago (on a brave summer student of mine). In Ruffini's work, they used the magnetic pulse to 'create' the perception of a flash of light by stimulating the visual cortex. The subject 'sees' the light, even though there's no such flash on the retina, since the sensory circuits in the cortex that usually interpret what's going on on the retina are activated remotely. 

So what did the experiment do? The person in India sending the message imagined a particular activity (hand or foot movement), and their EEG changed depended on whether they imagined the hand or foot. A computer interpreted the EEG, decided on which it was, and communicated with the computer in France. The French hardware system then zapped the human receiver in such a way as to either trigger the flash or not trigger the flash. The receiver then reported orally whether they'd seen a flash. In this way the 'message' (a string of 1's (hands) and 0's (feet) ) has been sent from one to another without using the senses of the receiver. 

In that sense this is telepathic. The receiving person had no communication with the transmitting person in a visual, oral, or any other way. True, one might ask, why didn't they just phone/Skype/email each other to send the message, and of course you wouldn't want to communicate with your family members overseas with an EEG/TMS system. But that's not the point. The point is that it is a great demonstration of science. 

Will it lead to small telepathic headsets? Rather than fuss with phones and email, we could just have a conversation with anyone in the world just by thinking about it. (You'd want to be sure you'd switched it off afterwards!)  Don't get excited – we're not in Chrysalids territory yet. That's a long, long, long, long way off. But it is good science.